Tetrahedron Letters 50 (2009) 957-959

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Structural elucidation of daphniacetal A, a new oxa-cage compound isolated from *Daphniphyllum macropodum* Miq.

Ning-Chuan Kong^{a,d}, Yu Zhang^a, Suo Gao^a, Yang Lu^b, Qi-Tai Zheng^b, Quan-Yun Sun^c, Fu-Mei Yang^c, Ying-Tong Di^{a,*}, Xiao-Jiang Hao^{a,*}

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China ^b Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, PR China

^c The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China

^d Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China

ARTICLE INFO

Article history: Received 13 October 2008 Revised 4 December 2008 Accepted 9 December 2008 Available online 13 December 2008

Keywords: Asymmetric synthesis Daphniacetal A Daphniphyllaceae Daphniphyllum macropodum Miq. NMR

ABSTRACT

A new oxa-cage natural product daphniacetal A (1) was isolated from *Daphniphyllum macropodum* Miq. Its structure and relative configuration were established based on spectroscopic data and the single-crystal X-ray diffraction crystallography. Compound **1** was also synthesized for determination of its absolute configuration and evaluation of antioxidant effects.

© 2008 Elsevier Ltd. All rights reserved.

Oxa-cage compounds have attracted great interest as challenging projects for asymmetric synthesis.¹ However, there was rare report on natural oxa-cage compounds. In the course of our search for *Daphniphyllum* alkaloids with interesting ring system,^{2,3} a new oxa-cage natural product, daphniacetal A (1), was isolated from the fruits of *Daphniphyllum macropodum* Miq. (Daphniphyllaceae). Herein, we describe the structural elucidation, asymmetric synthesis, and antioxidant effects of **1**.

The fresh fruits of *D. macropodum* (20 kg) were extracted with 95% EtOH. The extract was partitioned between EtOAc and tartaric acid. The aqueous layer was then basified to pH 10 followed by exhaustive extraction with CHCl₃. CHCl₃–soluble materials were subjected to an amino silica gel column (CHCl₃/MeOH 1:0 \rightarrow 0:1), from which a fraction, eluted with CHCl₃/MeOH (10:1), was purified on normal H silica gel (CHCl₃/MeOH, 25:1 \rightarrow 25:2) to afford

* Corresponding authors. Tel.: +86 8715223263; fax: +86 8715223070. E-mail addresses: diyt@mail.kib.ac.cn (Y.-T. Di), haoxj@mail.kib.ac.cn (X.-J. Hao).

0040-4039/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.12.027

compound **1** (0.0001%), which gave positive reactions with the Dragendorff reagent after being treated with 5% H_2SO_4 (CH₃CH₂OH) at 120 °C for 2 min.

Daphniacetal A (1)⁴ was obtained as colorless needles (ether), mp 149–150 °C, with $[\alpha]_D$ +90.8 (CH₃OH, *c*, 0.2). Its molecular formula C₉H₁₂O₃ was established by HRESIMS, indicating four degrees of unsaturation. The IR absorption bands at 3441 cm⁻¹ showed the presence of hydroxyl group in 1. ¹³C NMR spectra of 1 revealed 9 sp³ signals as shown in Table 1, including two methylenes and seven methines. Among them, two sp³-oxygenated carbons (δ_C 110.2

Table 1						
${}^{1}H [\delta_{H} (J, Hz)]$	and ¹³ C [8	_c] NMR dat	a of daphr	iacetal A (1) in CD ₃ OD	at 300 K

No.	1 H (δ_{H})	$^{13}C(\delta_{C})$
1	3.18 (1H, 6.0, 12.0)	50.2
2	2.79 (1H, t, 5.5)	50.7
3	4.35 (1H, dt, 5.5, 3.0)	81.9
4a	1.70 (1H, br d, 12.0)	34.7
4b	1.50–1.56 (1H, m)	
5	2.32 (1H, br s)	38.5
6	2.49 (1H, dd, 6.0, 12.0)	55.3
7	5.24 (1H, s)	101.0
9	5.70 (1H, d, 6.0)	110.2
10a	1.62–1.66 (1H, m)	40.7
10b	1.52–1.56 (1H, m)	

Figure 1. Selected 2D NMR correlations (A) and single-crystal X-ray structure (B) of 1.

and 101.0) were attributable to acetal or hemi-acetal groups. With consideration of four degrees of unsaturation, it was assumed for the presence of quateracyclic system in **1**.

Comprehensive analysis of two-dimensional NMR data, including the results of ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY, HMQC, and HMBC experiments, shown in Figure 1, enabled to establish planar structure of **1** as an 8,11-dioxatetracyclo [4.3.1.^{2.5}1.^{4.7}0^{1.6}]undecane with hydroxyl group at C-7. The relative configuration of **1** was determined by NOESY experiments, and was confirmed by X-ray crystallographic analysis (Fig. 1).⁵

To further determine the absolute configuration of **1**, asymmetric total synthesis of **1** was applied. A retrosynthetic analysis (Scheme 1) of the target molecule **1**, involving the intermediate **3**, led to the identification of maleic anhydride and cyclopentadiene as the starting point for our synthesis. Additionally, cinchona alkaloid-mediated opening of prochiral cyclic anhydride **2** in the presence of methanol served as an effective stereo- and regioselective operation.⁶

Scheme 1. Retrosynthetic analysis of daphniacetal A (1).

Scheme 2. Asymmetric synthesis of (+)-daphniacetal A (1). Reagents and conditions: (a) in petrolum ether–EtOAc, rt, 4h, 55%; (b) quinidine–MeOH, in toluene/CCl4, $-55 \degree$ C, 60 h, 92%, 97% ee; (c) 12, in pyridine, 70 °C, 12 h, 88%; (d) DIBAH, in *n*-C₆H₁₄, $-78 \degree$ C, 1 h, 76%; (e) Bu₃SnH/AIBN, in toluene, 50 °C, 1.5 h, 68%.

As described in Scheme 2, Diels-Alder reaction between maleic anhydride and cyclopentadiene in solution of petroleum ether/ EtOAc at room temperature gave endo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (2) with the yield of 55%. Quinidinemediated desymmetrization of meso-anhydride (2) with MeOH in toluene/CCl₄ at -55 °C for 60 h resulted in (+)-(1R,2S,5R,6S)-monoester (**3**) with 92% yield and 97% ee.⁶⁻⁸ Treatment of **3** with iodine in pyridine at 70 °C for 12 h gave (+)-(3S,4S)-iodo-lactone (4) in 88% yield.^{9,10} **4** was then reduced by DIBAH in THF at -78 °C for 1 h to produce corresponding (+)-(7S,9S)-iodo-cage (**5**) in 76% yield.^{9,11} Finally, hydrogenolysis of **5** with Bu_3SnH and AIBN in toluene at 50 °C for 1.5 h afforded (+)-daphniacetal A (1) as colorless crystal with 68% yield. The physical, spectroscopic, and spectrometric data (¹H NMR, ¹³C NMR, $[\alpha]^D$, and HRMS) of the synthetic material were well in consistence with those of the natural product.¹² Therefore, absolute configuration of the isolated 1 was determined as 1R.2S.3S.5R.6S.7S.9S.

Compound **1** showed no antioxidant effects against H_2O_2 -induced impairment in PC12 cells.

Acknowledgments

This research work was financially supported by the Natural Science Foundation of PR China (project No. 20672120). Authors were grateful to Professor Xun Gong, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), for the collection and identification of the plant material.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.12.027.

References and notes

- 1. (a) Suri, S. C. J. Org. Chem. 1993, 58, 4153-4154; (b) Coxon, J. M.; Fong, S. T.; McDonald, D. Q. Tetrahedron Lett. **1991**, 32, 7115–7118; (c) Marchand, A. P.; Reddy, G. M.; Watson, W. H.; Kashyap, R. Tetrahedron 1990, 46, 3409-3418; (d) Mehta, G.; Reddy, A. V. J. Org. Chem. 1987, 52, 460-462; (e) Mehta, G.; Rao, H. S. F.; Reddy, K. R. J. *Chem. Soc., Chem. Commun.* **1987**, 78–80; (F) Marchand, A. P.; LaRoe, W. D.; Sharma, G. V. M.; Suri, S. C.; Reddy, D. S. *J. Org. Chem.* **1986**, *51*, 1622-1625; (g) Mehta, G.; Rao, H. S. P. J. Chem. Soc., Chem. Commun. 1986, 472-473; (h) Fessner, W. D.; Prinzbach, H. Tetrahedron 1986, 42, 1797-1802; (i) Mehta, G.; Nair, M. S. J. Am. Chem. Soc. 1985, 107, 7519-7524; (j) Singh, P. J. Org. Chem. 1979, 44, 843-846; (k) Barborak, J. C.; Smith, E. C. J. Org. Chem. 1976, 41, 1433-1437; (1) Marchand, A. P.; Chou, T. C. Tetrahedron 1975, 31, 2655-2658; (m) Sasaki, T.; Eguchi, S.; Kiriyama, T.; Hiroaki, O. Tetrahedron 1974, 30, 2707-2712; (n) Prinzbach, H.; Klaus, M. Angew. Chem., Int. Ed. Engl. 1969, 8, 276–278. 2 (a) Li, C. S.; Di, Y. T.; Mu, S. Z.; He, H. P.; Zhang, Q.; Fang, X.; Zhang, Y.; Li, S. L.; Lu, Y.; Gong, Y. Q.; Hao, X. J. J. Nat. Prod. 2008, 71, 1202-1206; (b) Mu, S. Z.; Wang, J. S.; Yang, X. S.; He, H. P.; Li, C. S.; Di, Y. T.; Wang, Y.; Zhang, Y.; Fang, X.;
- Huang, L. J.; Hao, X. J. J. Nat. Prod. 2008, 71, 564-569; (c) Di, Y. T.; Liu, L. L.; Li, C. S.; Zhang, Y.; Zhang, Q.; Mu, S. Z.; Sun, Q. Y.; Yang, F. M.; Liu, H. Y.; Hao, X. J. Helv. Chim. Acta 2008, 91, 838-843;; (d) Tan, C. J.; Di, Y. T.; Wang, Y. H.; Wang, Y.; Mu, S. Z.; Gao, S.; Zhang, Y.; Kong, N. C.; He, H. P.; Zhang, J. X.; Fang, X.; Li, C. S.; Lu, Y.; Hao, X. J. Tetrahedron Lett. 2008, 49, 3376-3379; (e) Zhang, Y.; He, H. P.; Di, Y. T.; Mu, S. Z.; Wang, Y. H.; Wang, J. S.; Li, C. S.; Kong, N.; Gao, S.; Hao, X. J. Tetrahedron Lett. 2007, 48, 9104-9107; (f) Li, C. S.; Di, Y. T.; He, H. P.; Gao, S.; Wang, Y. H.; Lu, Y.; Zhong, J. L.; Hao, X. J. Org. Lett. 2007, 9, 2509–2512; (g) Di, Y. T.; He, H. P.; Wang, Y. S.; Li, L. B.; Lu, Y.; Gong, J. B.; Fang, X.; Kong, N. C.; Li, S. L.; Zhu, H. J.; Hao, X. J. Org. Lett. 2007, 9, 1355-1358; (h) Mu, S. Z. ; Wang, Y.; He, H. P.; Yang, X. W.; Wang, Y. H.; Di, Y. T.; Lu, Y.; Chang, Y.; Hao, X. J. J. Nat. Prod. 2006, 69, 1065-1069; (i) Di, Y. T.; He, H. P.; Liu, H. Y.; Du, Z. Z.; Tian, J. M.; Yang, X. W.; Wang, Y. H.; Hao, X. J. Tetrahedron Lett. 2006, 47, 5329–5331; (j) Di, Y. T.; He, H. P.; Lu, Y.; Yi, P.; Li, L.; Wu, L.; Hao, X. J. J. Nat. Prod. 2006, 69, 1074-1076; (k) Li, L.; He, H. P.; Di, Y. T.; Tian, J. M.; Hao, X. J. Helv. Chim. Acta 2006, 89, 1457-1462; (1) Li, L.; He, H. P.; Di, Y. T.; Gao, S.; Hao, X. J. Tetrahedron Lett. 2006, 47, 6259-6262; (m) Di, Y. T.; He, H. P.; Li, C. S.; Tian, J. M.; Mu, S. Z.; Li, S. L.; Gao, S.; Hao, X. J. J. Nat. Prod. 2006, 69, 1745-1748.
- (a) Kong, N. C.; He, H. P.; Wang, Y. H.; Mu, S. Z.; Di, Y. T.; Hao, X. J. Nat. Prod. 2007, 70, 1348–1351; (b) Kong, N. C.; He, H. P.; Wang, Y. H.; Gao, S.; Di, Y. T.; Hao, X. J. Helv. Chim. Acta 2007, 90, 972–976.
- Hao, X. J. *new. Chini. Acta 2007*, *90*, *912–976*. 4. Daphniacetal A (1): Colorless needles (ether), $[\alpha]_{20}^{20}$ +90.8 (*c*, 0.20, MeOH), mp 149–151 °C; IR $\lambda_{\text{max}}^{\text{KBr}}$: 3441(br, OH) cm⁻¹; ¹H (500 MHz) and ¹³C NMR (125 MHz) data see Table 1; El-MS (70 ev) *m/z*: 168 (M⁺, 3), 151(18),

125(49), 122(100), 93(61); HRESIMS m/z: 169.0860 (calcd for $\rm C_9H_{10}O_3,~[M+H]^*$ 169.0859).

- Crystallographic data for daphniacetal A (1) have been deposited at the Cambridge Crystallographic Data Center (Deposition no. CCDC 692676). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/ retrieving.htm.
- Bolm, C.; Schiffers, I.; Atodiresei, I.; Hackenberger, C. P. R. Tetrahedron: Asymmetry 2003, 14, 3455–3467.
- Bolm, C.; Schiffers, I.; Dinter, C. L.; Gerlach, A. J. Org. Chem. 2000, 65, 6984–6991.
- 8. Compound **3**: Colorless needles (petroleum ether), mp 76–78 °C; $[\alpha]_D^{20}$ +8.0 (*c*, 2.0, CCl₄). ¹³C NMR (CDCl₃, 125 MHz) δ_C 178.5, 172.9, 135.6, 134.2, 51.5, 48.8, 48.2, 48.0, 46.6, 46.0.
- (a) Zefirov, N. S.; Sereda, G. A.; Sosonuk, S. E.; Zyk, N. V.; Likhomanova, T. I. Synthesis 1995, 11, 1359–1361; (b) Tsai, S. H.; Wu, H. J.; Chung, W. S. J. Chin. Chem. Soc. 1996, 43, 445–449.
- 10. Compound **4**: White solid, mp 117–120 °C; $[\alpha]_D^{20}$ +48.1 (*c*, 2.2, acetone). ¹³C NMR (CDCl₃, 100 MHz) δ_C 176.3 (C-9), 170.6 (C-7), 88.7 (C-3), 52.4 (MeO), 49.3 (C-2), 48.6 (C-6), 48.4 (C-5), 40.3 (C-1), 37.6 (C-10), 24.9 (C-4).
- (C-2), 48.6 (C-6), 48.4 (C-5), 40.3 (C-1), 37.6 (C-10), 24.9 (C-4). 11. Compound **5**: White solid, mp 72–74 °C; $[\alpha]_D^{20}$ +120.3 (c, 1.5, acetone). ¹³C NMR (CDCl₃, 100 MHz) δ_C 109.0 (C-9), 98.9 (C-7), 90.5 (C-3), 53.7 (C-6), 49.6 (C-2), 47.5 (C-1), 47.1 (C-5), 39.8 (C-8), 29.3 (C-4).
- S0ynthetic compound 1: Colorless needles (petroleum ether–acetone), mp 150–152 °C; [α]_D²⁰ +91.0 (*c*, 0.2, MeOH). ¹³C NMR (CDCl₃, 100 MHz) δ_C 109.9 (C-9), 101.1 (C-7), 90.5 (C-3), 55.4 (C-6), 50.9 (C-2), 50.1 (C-1), 40.7 (C-10), 38.6 (C-5), 34.7 (C-4).